

DUAL-PURPOSE SPACE SIMULATION FACILITY FOR PLASMA THRUSTER AND SATELLITE TESTING

Michael Petkovic – AITC Test Facilities Manager, The Australian National University Rob Pollara – Dynavac

IEST Space Simulation Conference, Baltimore, 3rd – 6th November, 2014

Project Background

- The Australian National University
 - Research School of Astronomy and Astrophysics (RSAA),
 - Advanced Instrumentation Technology Centre (AITC)
 - National Facility for development of advanced terrestrial & spaceborne instrumentation

- Research School of Physics & Engineering (RSPE)
 - Space Plasma Power and Propulsion (SP3)

Project Background

- Helicon Double Layer
 Thruster (HDLT)
 - neutral plasma beam (no neutraliser)
 - accelerating electric field (no high voltage grid)
 - wide variety of fuels
 - scalable in both power & geometry
 - no moving parts
 - increased reliability over other EP thrusters

Project Background

- SP3 required a larger thruster test facility
- AITC required thermal vacuum chamber for space & cryogenic testing
- Consortium for Australian Space Research Program (ASRP) grant
 - Australian National University
 - Airbus Space & Defense
 - Surrey Space Centre
 - Vipac Engineers and Scientists
- Australian Plasma Thruster (APT) Project funded mid-2011 (last round)

- Single Multi-purpose Facility
 - Functional & performance testing of electric propulsion thrusters
 - TVAC testing & vacuum bakeout for space hardware
 - Cryogenic vacuum testing of large astronomical (optical) instrumentation;
 - Rapidly re-configurable

- Thruster Testing Requirements
 - Long, large diameter chamber
 - Non-magnetic material construction
 - Accommodation of thruster test and diagnostic hardware
 - High pumping speeds
 - Radiative cooling to the thruster

- TVAC & Cryogenic Test Requirements
 - Accommodation for Nanosats to mini-satellites
 - Independent control of radiative shrouds & conductive thermal platen
 - High temperature for bakeout
 - Low temperature for testing of cryogenic instrumentation (ideally ~100K)
 - Rates & stability design cost trades

- Operational Requirements
 - Turnkey control system
 - Man-in-the-loop facility operation
 - High degree of safety with facility interlocks
- Pumping Requirements
 - Dry pumps only
 - Rapid pumpdown to <1E-5 overnight
 - Low leak rate

- General Requirements
 - Australian mains power
 - Distributed mass on suspended concrete slab
 - O-ring seals for vacuum connections
 - Cryo-plate for contamination witness samples
 - Several test-item ports
 - Remotely located facility infrastructure

S2F Design Concept

Fix
Ref
The Work

- Fixed main chamber
- Removable thruster annulus
- Thruster annulus design as per Wombat facility
- Translatable rail-mounted endcaps
- Radiative thermal shrouds & conductive thermal platen
- Removable shrouds
- Rear endcap accommodates
 internal cryopumps

IEST Space Simulation Conference, Baltimore, 3rd – 6th November, 2014

S2F Procurement Approach

- Turn-key design, build & install-to-cost contract, experienced supplier
- Plume Capture System (PCS) and supporting infrastructure works by the AITC engineering team
- Development Timeline
 - Formal RFT issued mid-June 2012
 - Dynavac selected as preferred supplier mid-August 2012
 - CDR concluded mid-November 2012
 - EDC mid-December 2012
 - FAT conducted mid-May 2013
 - Delivery to site early-September 2013
 - Commissioned mid-December 2013

- Chamber Configuration & Layout
 - Accommodated within AITC Integration Hall
 - 4-segment chamber
 - fixed main chamber
 - translatable endcaps
 - removable thruster annulus
 - Pumping & thermal control equipment on far side
 - Control and DUT near side

- Control Subsystem
 - PLC controllers
 - LabVIEW Human-Machine Interface (HMI)
 - Intuitive control software
 - Safe operation (critical items are interlocked)
 - Minimal operator training
 - Key test parameters displayed
 - Data-logging

- Thermal Subsystem
 - Radiative thermal shrouds
 - Conductive thermal platen
 - Independent thermal control
 - 2-off 400CFM Dynavac
 Thermal Conditioning Units
 - GN₂ heat transfer medium
 - High DUT thermal load capacity

Dynavac

- Thruster Test & Diagnostic Subsystem
 - Thruster Annulus
 - 1.2m long cylindrical chamber section
 - supports thruster under test
 - supports thruster test subsystems
 - Thrust Measurement Subsystem
 - thrust pendulum
 - laser sensor measurement system
 - calibration system.

'Dynavac

S2F System Description

• Thruster Test & Diagnostic Subsystem

- Plume Capture Subsystem
 - 2-off custom internal LN₂ assisted, Gifford-McMahon helium cryocoolers
 - high pumping speed
 - ionised & ballistic non-ionised molecules
- Plume Diagnostic Subsystem
 - XYZ mechanism
 - ion analysers, Langmuir, emissive, optical probes & magnetic probes
- Propellant Supply Subsystem
 - supply of test gases

- Supporting Infrastructure
 - 15000 litre LN₂ tank
 - VJ-reticulated LN2
 - GN₂ vaporiser & supply
 - Hot/Cold GN₂ & pump exhaust to building roofline
 - O₂ monitoring sensors
 - S2F mains power supply & generator backup
 - Chilled water supply

S2F Design Challenges

- Need for interchangeable vacuum chamber subassemblies for required operating modes
- Tight site floor plan and floor loading requirements
- Need to meet or exceed operational performance goals while cost-conscious

S2F Design Challenges

- Great care was put into the engineering design of the chamber
- Careful modelling of the system parameters to best size the thermal control system
- Careful design of thermal pathways
 - piping diameters (to balance pressure drops)
 - pipe spacing (for thermal surface uniformity)
 - enabled system performance goals to be met
 - enabled correct flow rates to individual shroud sections

S2F Design Challenges

- Thermal platen and shroud designed in conjunction with the thermal control system
- Cost-efficient commercial recirculating GN₂based thermal control system was chosen over a liquid nitrogen cooling and electric heating based system

S2F System Vacuum Performance

- ✓ Oil-free pumping system
- \checkmark O-ring vacuum seals
- ✓ Rapid pumpdown for operations
 - manual & automated pumpdown
 - rough to <3E-2 Torr 2 h
 - pumpdown to <1E-6 Torr: <8 h
- ✓ Excellent ultimate vacuum
 - <3E-7Torr @ 22°C ambient
- ✓ Low leak rate
 - 24hr rise to: <1E-3 Torr

S2F System Thermal Performance

- ✓ Temperature range
 - -170°C to 150°C
- ✓ Transition rate >3K/min
- ✓ Stability at control temp <1K</p>
- ✓ Gradients @ set-point
 - shroud: < 2K; platen: < 0.5K
- ✓ Thermal Capacity
 - 2500W radiant & 500W conductive load @ 193K and 353K
- ✓ TVAC test item capacity
 - 500kg mass; 1.6m x 1.6m x 2.25m envelope

S2F Thruster Testing Performance

- ✓ Thrust balance capacity
 - 25kg capacity; 500mm x 840mm x 480mm envelope
- Thrust measurement
 - range: 0mN to 500mN; resolution: 0.1mN; accuracy: < 10%
- ✓ Plume capture capacity
 - 3.9 E-5hPa maintained at 350sccm argon flow
 - 7.9 E-5hPa maintained at 70sccm argon flow
 - 2-orders of magnitude pumping improvement over S2F pumps alone
- ✓ Plume capture system regeneration >2 months
- ✓ Plume diagnostic envelope
 - 1.6m x 1.6m x 2.6m

IEST Space Simulation Conference, Baltimore, 3rd – 6th November, 2014

S2F System Operations Performance

- ✓ Support multiple testing regimes
- ✓ System reconfiguration with minimum effort
 - personnel: 3-4; duration: 1-day
- ✓ Integrated control system
 - PLC/LabVIEW-based
 - HMI interface and safety interlocks
 - manual & automated operation
- ✓ System status display and logging
- ✓ Test item temperature sensor display and logging
- Expandable for infrastructure subsystems interface & control

Challenges Overcome

- Very tight schedule and VERY limited funds
- University procurement requirements added a significant cost and several months to the S2F procurement
- Significant new supporting infrastructure required
- Minor technical issues

Current Operational Status

- S2F is operational
- All thruster test subsystems are operational
- S2F currently in use for HDLT and "Pocket Rocket" thruster development testing
- GMTIFS Beam Steering Mirror prototype qualification testing @ 100K early Dec-2104
- TVAC acceptance testing of several University CubeSats in early 2015

Conclusion

- S2F is a unique multi-purpose vacuum test facility
- Only TVAC system in Australia (Asia-Pacific region)

- Cornerstone of a new national facility at the ANU AITC
- AITC facilities provide a one-stop-shop for space AIT

Acknowledgements

- The authors would like to acknowledge the support of:
 - The Australian Commonwealth Government through the ASRP for funding;
 - APT consortium partners: Airbus Defence & Space, Surrey Space Centre, Vipac Engineers and Scientists, The Australian National University;
 - Dynavac, as the S2F system supplier; and,
 - Major infrastructure and subsystem suppliers: BOC Australia, Cryoquip Australia, PHPK Technologies, Shaw Building Group
 - Morgan Advanced Materials for the manufacture of the thruster cavity prototype

without whose support, the S2F would not have been realised